Dynamic Stability Analysis of Thick Plates with Varying Thickness and Concentrated Mass on Inhomogeneous Pasternak Foundation
نویسندگان
چکیده
منابع مشابه
Stability Analysis of Non-Local Euler-Bernoulli Beam with Exponentially Varying Cross-Section Resting on Winkler-Pasternak Foundation
In this paper, linear stability analysis of non-prismatic beam resting on uniform Winkler-Pasternak elastic foundation is carried out based on Eringen's non-local elasticity theory. In the context of small displacement, the governing differential equation and the related boundary conditions are obtained via the energy principle. It is also assumed that the width of rectangle cross-section varie...
متن کاملMesh-free Dynamic Analyses of FGM Sandwich Plates Resting on A Pasternak Elastic Foundation
This study analyzes the free vibration, forced vibration, resonance, and stress wave propagation of orthotropic sandwich plates made of functionally graded materials (FGMs). Dynamic analyses are conducted using a mesh-free method based on first-order shear deformation theory and the shape functions constructed using moving least squares approximation. The sandwich plates are rested on a Pastern...
متن کاملStatic Analysis of Shear Deformable Rectangular Plates on Winkler-pasternak Foundation
Static analysis of shear deformable plates resting on two-parameter foundations is presented by the method of discrete singular convolution (DSC). The influence of foundation parameters on the deflections of the plate has been investigated. Numerical studies are performed and the DSC results are compared well with other analytical solutions and some numerical results.
متن کاملBuckling Analysis of Polar Orthotropic Circular and Annular Plates of Uniform and Linearly Varying Thickness with Different Edge Conditions
This paper investigates symmetrical buckling of orthotropic circular and annular plates of continuous variable thickness. Uniform compression loading is applied at the plate outer boundary. Thickness varies linearly along radial direction. Inner edge is free, while outer edge has different boundary conditions: clamped, simply and elastically restraint against rotation. The optimized Ritz method...
متن کاملDynamic Analysis of Geometrically Nonlinear Circular Plates on Winkler Foundation
Geometrically nonlinear analysis of thin circular plates on Winkler elastic foundations has been studied in this paper. The nonlinear partial differential equations obtained from von Karman’s large deflection plate theory have been solved by using the discrete singular convolution (DSC) in the space domain and the harmonic differential quadrature (HDQ) method in the time domain.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Korean Society for Noise and Vibration Engineering
سال: 2011
ISSN: 1598-2785
DOI: 10.5050/ksnve.2011.21.8.698